Cantor-Bernstein's theorem in a semiring

Marcel Crabbé

Consider a commutative semiring with sum +, product \cdot , the identity 1 for \cdot , and the identity 0 for +, which is absorbing for \cdot .

Suppose moreover that the semiring contains the element \aleph_0 , and, to the usual axioms for commutative semirings, we add:

$$\aleph_0 = \aleph_0 + 1 \tag{1}$$

if
$$\kappa + \mu \le \kappa$$
, then $\mu \cdot \aleph_0 \le \kappa$ (2)

Here the relation \leq is defined by: $\kappa \leq \mu$ if and only if $\kappa + \nu = \mu$, for some ν . This relation is clearly transitive and reflexive.

Without being committed to implementation of cardinal numbers in a specific set theory, it is easily seen that all these axioms are satisfied in the usual interpretation, even without assuming the axiom of choice: the sum and the product of cardinal numbers are explained through union of disjoint sets and cartesian product, respectively; 0 is the cardinal of the empty set, 1 is the cardinal of a singleton, and \aleph_0 the cardinal of the set of natural numbers. I observe that according to this interpretation, $\kappa \leq \mu$ means that there is an injective function of a set of cardinal κ into a set of cardinal μ .

Finally, to see that axiom (2) is verified, let K, M be two disjoint sets of cardinal κ and μ , respectively. Let also f be an injective mapping from $K \cup M$ into K. Then to each x in M and natural number n, we associate the result of applying the (n + 1)-fold iterate of f to x:

			K			
M	f[M]	f[f[M]]	~	f[f[f[M]]]		
x_1	$f(x_1) \longrightarrow$	$f(f(x_1))$	\sim	$f(f(f(x_1)))$	\sim	
x_2	$f(x_2)$	$f(f(x_2))$	\frown	$f(f(f(x_2)))$	\frown	
x ₃ -	$f(x_3) \longrightarrow$	$f(f(x_3))$	\frown	$f(f(f(x_3)))$	\frown	
1		•				

That is, the function g, defined by the following recursive equations

$$g(x,0) = f(x)$$

Cantor-Bernstein

$$g(x, n+1) = f(g(x, n))$$

is an injective mapping of $M \times \mathbb{N}$ into K.

Proposition 1 If $\kappa + \mu \leq \kappa$, then $\kappa + \mu = \kappa$.

Proof

If $\kappa + \mu \leq \kappa$, then $\mu \cdot \aleph_0 \leq \kappa$, by axiom (2). This means that, for some λ , $\mu \cdot \aleph_0 + \lambda = \kappa$. We then have

$$\begin{aligned}
\kappa + \mu &= \mu \cdot \aleph_0 + \mu + \lambda \\
&= \mu \cdot (\aleph_0 + 1) + \lambda \\
&= \mu \cdot \aleph_0 + \lambda \qquad \text{axiom (1)} \\
&= \kappa
\end{aligned}$$

Cantor-Bernstein's theorem states that \leq is a partial order:

if
$$\kappa \leq \mu$$
 and $\mu \leq \kappa$, then $\kappa = \mu$.

Proof

If $\mu \leq \kappa$, there exists λ such that $\mu + \lambda = \kappa$. Then, if $\kappa \leq \mu$, we have $\mu + \lambda \leq \mu$ and, by Proposition 1, $\mu + \lambda = \mu$, i.e., $\kappa = \mu$.

Remarks

1. Axioms (1) and (2) are equivalent to the statement:

$$\kappa + \mu = \kappa$$
 if and only if $\mu \cdot \aleph_0 \le \kappa$ (3)

which generalizes the well-known feature of Dedekind-infinite cardinals, namely,

$$\kappa + 1 = \kappa$$
 if and only if $\aleph_0 \le \kappa$

2. \aleph_0 is the unique element satisfying (3).

3. The axioms allow one to derive directly the properties $\aleph_0 + \aleph_0 = \aleph_0$ and $\aleph_0 \cdot \aleph_0 = \aleph_0$.

Indeed, as $\aleph_0 + 1 + 1 = \aleph_0$, we have $(1+1) \cdot \aleph_0 \leq \aleph_0$ and $\aleph_0 + \aleph_0 \leq \aleph_0$. Hence, by Proposition 1, $\aleph_0 + \aleph_0 = \aleph_0$. It follows that $\aleph_0 \cdot \aleph_0 \leq \aleph_0$. But $\aleph_0 \cdot \aleph_0 = (\aleph_0 + 1) \cdot \aleph_0 = \aleph_0 \cdot \aleph_0 + \aleph_0$. Therefore, $\aleph_0 \leq \aleph_0 \cdot \aleph_0$ and, by Cantor-Bernstein's theorem, $\aleph_0 \cdot \aleph_0 = \aleph_0$.

4. Remark 1 and the fact that $\aleph_0 \cdot \aleph_0 = \aleph_0$ immediately entail

$$\kappa + \mu = \kappa$$
 if and only if $\kappa + \mu \cdot \aleph_0 = \kappa$

From this we get

 $\kappa + \kappa = \kappa$ if and only if $\aleph_0 \cdot \kappa = \kappa$