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TYPICAL AMBIGUITY AND THE AXIOM OF CHOICE

MARCEL CRABBE

E. Specker has proved that the axiom of choice (AC) s false in NF [6]. Since AC s
stratified, one can, according to another famous result of Specker [7], prove directly
— AC in type theory (TT) plus some finite set of ambiguity axioms, i.e. sentences of
the form ¢ <> ¢ *, where ¢ * results from ¢ by adding one to its type indices.

We shall in §2 of this paper give a disproof of AC directly in TT plus some axioms
of ambiguity. The argument will be split into two parts. The first one (contained in
Proposition 2) concerns cardinal arithmetic and has nothing to do with typical
ambiguity. Though carried out in TT, it could have been done in other set theories
such as Zermelo’s Z or ZF. The second part is an application of this to the cardinals
of the universes at different types. This is made possible through the introduction of
an appropriate definition of 2% in §1 enabling one to express shifting sentences as
“typed properties” of the universe, in Boffa’s sense. The disproof of AC is then
completed in TT plus two extra ambiguity axioms. In §3, we show that thisisin a
sense the best possible result: that means that every single ambiguity axiom is
consistent with TT plus AC, thus giving a positive solution to a conjecture of Specker

[7, p. 119].

§1. The definition of 2*. Until the end of §2 we work in TT. As usual, we omit the
mention of type indices. V is the universe: {x | x = x}. 4 is the empty set: {x | x 5 x}.
NC s the set of cardinal numbers. The letters «, 5, 7, 0 will denote elements of NC. |x|
is the cardinal number of x;that s, the set of all sets equipollent to x. vis|V|. USC(x)
is the set of all unit subsets of x: {{y}|y e x}. SC(x) is the power set of x. T|x| is
|USC(x)|. The inverse operation of T is defined by the clauses: T~ ! Ta = a and
T 'x = A, if x is not a cardinal of the form Ta, ie. x £ Tv.

Now we want to define 2* in such a way that it has the same type as «. This poses a
problem, because 2!*! is usually taken to be [SC(x)|, which is located one type higher
than |x]. One can adopt two different strategies to avoid this difficulty. The first one is
to define 2! just in case |x| = |USC(y)| for some y and then put 2! = |[SC(y)|. The
second one consists in defining 2* as |y| when [USC(y)| = |SC(x)|, and leaving
2*I = A when there is no such y. The first definition was introduced by Specker and
is usual in the TT-NF literature. The second one, which will be adopted here, has
been introduced in [ 2], where it is shown to be more general, in TT and in NF, than
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the former. Formally one thus defines 2% as follows:
2M =T YSC(x)) and 2% =Aif x ¢ NC.

Beth numbers may now be introduced as usual: o(x) = x, Dy, 4(x) = 27,
PROPOSITION 1. 1. 2IVSCWI — |§C(x)).

2. 2% # A — T2% = 2T,

32 =TB>2*=p

4. 2" # A - o < 2*(Cantor’s theorem).

PROOF. 1. 21USCl — T~ 'SC(USC(x))| = T HUSC(SC(x))| = |SC(x)].

We let x be an element of 4, i.e. |x]| = «.

2. Using 1, one obtains: T2* = TT ~!|SC(x)| = 272, if 2% = A.

3. Let yep. If 2™ =Tp, then, by 1, |SC(x) = [USC(y)|. Hence 2°*=
T 1SC()| =yl = f. ,

4.Itisknown that [USC(x)| < [SC(x)|. S0 2* # A implies that To < 27* = T27 by
1 and 2. Thus « < 2% [ ]

Note that the third part of this proposition is not true for Specker’s definition of
2%,

We define &(y, o) as

{0 e NC|Vx(xex A (VBex)(2! <y—2Pex)—»dex)

if <y and &(y,x)=A if (X, ¥} € NC or x£y. ®(,a) is thus the set
{0,272} n {8]0 < ). If 7 is a cardinal number, we let 7o denote the least
cardinal number § such that &(y, f) is finite. More precisely yo = fif f <y, &(y, B)is
finite and (Y3 < 9)(®(y, 8) is finite — B < 0),and y, = A otherwise. We remark that
D(y,7,) 1s always finite and that D(y,70) # Aiff 35 # A.

The formula y € &(y,,) means that 7 1s the last (the greatest) cardinal in D(y,70).
We let Last(y) denote this formula. We can also express that @(y,y,) has an even
number of elements by writing down the formula: “there is a partition of ®(y,7,)into
two equipollent sets™. Even(y) will abreviate this formula.

Using Proposition 1, one proves readily that @(Ty, Ta) = {T6|6 e d(y,2)) and
that (T9), = Ty,. So one obtains

LeEMMA 0.1. Last(y) — Last *(Ty).

2. Even(y) - Even ™ (T7).

REMARK. The meaning of this lemma becomes clear if one notices that
Last(|v|) and Even([v|) are typed properties in the sense of Boffa [1]. Indeed, if
v#A then Last(jv]) says that the sentence Last(v) is true in the structure
<v,SC(v), SC(SC(v)),...> which is “isomorphic” to (USC(v), SC(USC(v)),
SC(SC(USC(v))),...> (see [4]) and similarly for Even(|v|).

§2. Let TT + AC be the theory of types with, as additional axioms, the sen-
tences expressing the axiom of choice at each level. In the following AC will be
used only through two of its consequences, namely (Vx e NC)(x, # 4) and
(Vxe NC)(Vy e NC)(x < y A #EAS <y vy <2,

LEMMA 1(TT + AC). If 27 # A, 0 < v and ®(y,0) is finite, then

¢ B2 A (P(27,a) = Blya) U (2] v B2, 2) = Dy,2) U {28,27})).
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PRrOOF. Assume the hypotheses. Since @(y, %) is finite and not empty, there is a
greatest cardinal fin @(y, o). We have 29 ¢ 7, and, with AC, this implies 7 < 2% Thus,
£22% £ A28 <20 <27 S020 e B(2',). And 22" € B(27,2) iff 27" =27,

LemMA 2 (TT + AC). If 27 # A, then 75 = (27),.

PRrOOF. It follows from the hypothesis that @(y,7) = {7} and @(2",7) = {7,27}. So,
from AC, 7, and (27), are not empty and (27), < 7. Moreover, @(7,(27)y) <
@(27,(2")o). Thus, ®(7,(27),) is finite and not empty, and 7, < (27),. On the other
hand, ®(27,7,) is also finite, by Lemma 1. Hence (20 < 7o-

ProposiTION 2 (TT + AC). 1. If 27 # A, then — ((Last(y) « Last(27)) A
(Even(y) < Even(2"))).

2.If 2% # A, then —1((Even(y) <> Even(27)) A (Even(27) < Even(2*"))).

PROOF. Let us suppose 27 # A and Even(y) <> Even(2?). By the two previous
lemmas, we then have Last(2’). Hence, 2°"# A entails D%, (27)0) =
®(27,(2")y) U {2%} and so, by Lemma 2, Even(2”) <> Even(22"). This proves 2.

Similarly, Last(y) implies Even(y) <> Even(2%), which proves 1. [ ]

If Eis a formula or a term, E* results from E by raising the types by one. We shall
use subsequently the well-known fact (see [7]) that TT+ ¢ entails TTH o™, for
every formula ¢.

THEOREM 1. There are two sentences T and @ such that the theories
TT + AC+ (t—1")+(cea”) and TT + AC + (ga)+(cT 0™ ") are
inconsistent.

PROOF. The sentences T and ¢ are Last(v) and Even(v), respectively. If we notice
that 2™ = v* and if we substitute Tv for 7 in the first part of Proposition 2, we
obtain

—((Last*(Tv)e>t*) A (Even " (Tv) >0 "))

as a theorem in TT + AC. We then use Lemma 0 to get the inconsistency of
TT+AC + (teth) +(6ea").

Using the second part of Proposition 2 and the fact that 21T = Tv* and
2277V — y**_ we obtain in a similar way the inconsistency of TT + AC +
@)+ (6 ea™ ). |

Forster has proposed [3, pp. 59-61] to consider axioms of ambiguity of the form
@ @** where o **is@* " (ktimes), k > 0. Translating Specker’s original proof
in TT, he notices that, given k, 3k axioms of this sort suffice to disprove AC. In fact
two such axioms are enough. This will be shown now.

Foreach k > 0, one defines the sets @, (7, &) = {2, (@), Dox(a)s. .y n{6]|d <yiby
substituting 2,(8) for 27 in the definition of @(y,«) in §1. Remark that y, as defined in
§1 is also the least cardinal number « such that @,(y,2) is finite and not empty.
Even,(y) will be the formula expressing that ®,(7.7,) has an even number of
clements. Parallel to Lemmas 1 and 2 and Proposition 2, we have in TT + AC:

1.2,() # A, « < 7 and D (y,2) is finite imply ®(2u(y), %) = Dy(y, ) U {2(P)} or
B7.7) U {3 B L) for some L B) not in B3, 2).

2.(2)o = Vo, i ) # A

3.1f 2u(y) # A, then

—1((Last(y) <> Last(24(y)) A (Eveny(y) = Eveny(Ji()));
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if 2,5,() # A, then
—((Even,(y) < Eveny(3,(7)) A (Eveny(2,(;)) > Even,(2,,(:)))).

ProOFs. The proof of 1 is an immediate generalization of the proof of Lemma I,
and 2 results by induction from Lemma 2. 3 is proved by generalizing the proof of
Proposition 2; however, the last linc becomes: Last(-) implies 3,(f) = -, for some
r < k.and thus 2, , () = 2,(;). The conclusion follows.

Let o, be the sentence Even(v). Theorem | generalizes to:

THEOREM 1 (BIS). For each k > 0, the theories TT + AC + (1« T 4 (o a0 F)
and TT + AC + (o, 0" + (6, < 0, %) are inconsistent.

§3. The disproof of AC can be accomplished with two shifts: two sentences
shifting once or one shifting twice. We show now that this is also necessary.

THEOREM 2. For every sentence ¢ and natural number k > 0. the theory
TT + AC + (o< @t Y is consistent.

Proor. Fixk > 0, and let 0. 1,....p — 1 contain the types occuringin ¢. We may
suppose that p > 1. By an abuse of notation. we identify ¢ with the stratifiable
sentence of the language of ZF resulting from the omission of the type indices in ¢
and, if necessary, some changes of bound variables. We work in ZFC. where
cardinals arc as usual identified with initial ordinals. If x is a cardinal (x # 0), let us
write 2 = ¢ for the formula < 2, 2(2)...., 27 o) > &= ¢ (here # is the power set
operation of ZF, and the quantifiers of type i are restricted to #2{(x)(0 < i < p— 1)
If TT + AC + (@ < ¢ **) were inconsistent, then ZFC would prove

2# 0> (2= @ (x) E o)

This is because {x, 2(x),.....2%x)....> is a model of TT + AC and ¢, ¢ *are true
within it just in case &= @, J(x)E o, respectively. Let us write o ~ f§ for
“a= e fE @7 1t will be sufficient to prove that

(%) ZFCHa#0-> 72~ 1,(2)

does not hold.

We suppose (*) true and derive a contradiction. n will denote henceforth the
number 2(k + p) — 3. Using forcing, we start with a countable transitive model M of
ZFC having cardinals % (0 <i<n) such that o, <2, < < Ay, 2% =0,
whenever i <n — 1, 2™ ' =2, and %,_, is regular. The following diagram will
illustrate this situation in case k = I and p = 3:

%y %3
*——— 5 e
-~ . .\) .
So,if iis odd and i < n. then there is a ¢ such that 2,02 = (2,4 1), and it follows
from (*) that «, ~ 2, ,.
We use forcing again in order to collapse «,_, and 2, without changing the

situation below «, ; (sec [5]). This is done by extracting a generic set G from
C = [ /| /s a function from a subset of 2, | having power <, | into «,}. 2, ,
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being regular, C is «, ;-closed and, in M[G], «; is a cardinal (i<n—1),

=0, <n—2),and2* % =a, ,.Incasek = 1andp = 3,the diagram above
is thus changed into:

%y O.‘s

* >
. . \o
% o, Oy

(*) implies that, in M[G], o; ~ ;,; wheniisevenandi<n — 1. c

But, in M[G] there is no new subset of a set of M of power ,_,. Thus,
M[G]E (¢, F @) iff MFE (¢;F @) (i <2k). So, going back to M, we remark
that ag ~ o, ~ oy ~ ** ~ ay | ~ %y Thatis, ay ~ Ji(at), contradicting (*). 1

REMARKS. 1. The generalized continuum hypothesis can be disproved in TT plus
one ambiguity axiom (g <> ¢ is such an axiom, though not the most natural one).
For this reason the proof of Theorem 2 needs situations in which the GCH does not
hold. Nevertheless it is compatible with the construction made in this proof that the
GCH holds below a,. In particular, every ambiguity axiom is consistent with
TT + AC + CH.

2. One can be the forcing constructions within TT plus an axiom of infinity.
Consequently, it is possible to weaken the assumption, made in the proof (for
convenience), that ZF is consistent.
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